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I.INTRODUCTION

When we model shock and impact attenuation we should include nonlinear
forcing and damping termsl. After considering some of the models which have
been used in the past, the author studied some new nonlinear equations which
have applications in many fields besides mechanics. Because of their general
interest, some of the solutions of one equation will be described in this
report.

The study of nonlinear differential equations is difficult and few
exact solutions are known for problems of general interest. When exact
solutions are available, they offer several advantages, First of all, they
simplify tasks like mapping stable regions, establishing the existence of
limit cycles, and so on. In addition, it becomes easier to survey various
combinations of parameters over the entire ranges of their allowed values.
This can be a fruitful source of ideas. Finally, by avoiding approximations,
we eliminate an undesirable source of uncertainty. With this in mind we will
restrict ourselves in this report to exact solutions which can be expressed
by a finite number of elementary functions.

The method we will follow consists of starting with an equation which
has known solutions, transforming it in a general way and then choosing a
particular form of interest. Since there can be many starter equations,
transformations and particular forms, the case we will discuss is merely an
example, The method is not new, but as we shall see, it can lead to new
results of general interest.

Let us begin with the damped, driven linear oscillator

x+/9i+u2x-F (1)

where ~ and U2 are constants. Solutions and applications of this equation
are well known. Next, we choose a general transformation of the dependent
variable by considering X-X[x(t)] such that

x-ix’ and x - m’ + X2X” (2)

where a prime denotes differentiation with respect to the new variable x. Eq
(1) becomes

X’x + X“X2 + /9X’x+ (J2X- F (3)

Finally, we choose a particular form

X- f exp(ax) + f

where a, ( and f are constants. Putting Eq (4) in Eq (3) gives

~ + QX2 + ~x + (w2/cr)[l+ (f/~)exp(-ax)] - [F/(af)]exp(-ax)

(4)

(5)
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which describes a forced nonlinear oscillator with quadratic as well as
linear damping. Because of the forms in Eqs (4) and (5) we call this an
exponential oscillator. Equations with linear rather than exponential
stiffness have been discussed previously in connection with impact
attenuation using either quadratic damping2 or combined Coulomb, linear and
quadratic clampings. Equation (5) is not as general as one might like since
the quadratic damping coefficient, a, appears in several places. However,
this limitation can be advantageous if we desire a simple reduction to the
linear case. For example, if .f--~-(l/a), then x-(1/a)ln(l+aX) + X and Eq (5,
+ Eq (1) as a + O.

Damping terms which depend on odd powers of x like 9X automatically
follow the sign of x. If @O, this term always opposes the motion (positive
damping). If &O, it always aids the motion (negative damping). However,
terms which depend on even powers of x like ax2 must have the sense of the
damping specified. Various conventions have been used for particular
applications. Here we will find it more convenient to specify the sign of Q
for each segment of a motion.

When the linear oscillator is externally excited by F(t) in Eq (1)
we may combine the right side of Eq (5) with the last term on the left side
to make it clear that the exponential oscillator Is parametrically or inter-
nally excited. Various other forms of F may also be used. For example, if
F=pa[< exp(ax)]=qm(X-f) from Eq (4), the @ term may be combined with the
U2X term in Eq (l), leaving -paf on the right as a driving term. The right
side of Eq (5) becomes q. If w is a constant, the solutions are simple. If v
is a sinusoidal function of time, Eq (1) becomes a damped, driven Hill’s
equation, while Eq (5) is externally excited, etc.

For constant F-FO the right side of equation (5) combined with the

last part of the left side gives the stiffness or restoring force

f- (u2/a)(l+6 exp[-ax]) (6)

where 6-(f-FO/w2)/(. For 6--1, a plot of f versus x will always pass through

the origin. This includes the linear form W2X which results when a+O. For
other values of a, the curves exhibit “hardening” or “softening” and
approach asymptotes which depend on the sign and magnitude of a for given
U2. For 6+-1, the curves do not pass through the origin. Different
parameters giving different curves may apply for different segments of a
motion. For example, the two tunes

f- f(AB) - (1-fiexp[-x])
(7)

T - f(CD) - -(1-fiexp[=])

2



with W2<2=1, a.-l--~ and 6-~--fi are seen to be discontinuous in Fig. 1.
This restoring force will be used later in an example of an oscillation
between the turning points x-f.881, Here barred values apply for motion in
the negative x direction while unbarred values denote motion in the positi~’e
x direction. Another example to be described later uses the restoring force
segments

f= -l.703(l-.5exp[x])
(8)

f- l.703(l-.5exp[ -x])

with -1.305, a-~1 and 6=- .5 which form the closed loop ab in Fig. 1.
The first f is zero for x-.693 and describes the lower segment while the
second f vanishes for x--.693 and describes the upper segment. We have not
used bars in Eq (8) to specify the direction of motion for each
segment. A particular application however will require specification of
clockwise or counterclochise motion around the loop. As with any hysteresis
loop, the integral of f around the loop does not vanish.

Let us describe how the loop in Fig 1 might be used to represent a

cyclic stress-strain (u-c) tune for example’. Let x represent a displace-
ment which we multiply by [al-(l/L) where L is a characteristic length. Then
c-[alx is a strain. Let f represent a force per unit mass which we multiply
by pL where p is the density of the solid sample. Then u-pLf is a stress.
Note that the turning points of the loop depend only on 6 and a not w. This

may be seen from the condition of loop closure,namely, (u2/a)[l+6exp(-axO)]

--(u2/a)[l+6exp(axO)] when we return to the starting point XO. This leads to

.5[exp(axO)+exp(-axO)] - cosh(axo) - -1/6, so if 6--.5, then axO-~1.317 as

shown. Now suppose the sample we are using is initially free of stress and
strain. That is, we start at the origin in Fig 1 instead of at some point on

the loop. For f-O when x-O in Eq (6), we must have 4--1. Let pLu2=l for
convenience and represent the first segment by ~u-[l-exp(-c)] , using a=l and

6 increasing (v-bO). In practice the initial portion is a straight line and
we should start our first arc segment where the elastic limit is reached.
However, for simplicity we will use an arc from the beginning for purposes
of illustration. In Fig 2 we see that as we increase the pull on the sample
(a>O increasing) we increase c to 1 when u-.632 in the units we are using.
Now suppose we begin to release the tension, decreasing c (v<O). When the
stress has been removed (o-O) we find a residual elongation (c>O). The
second arc segment is described by Zo - -[1-.6exp(c)] where C-la]x with a=-

1. The value 6-- .6 was found from the continuity condition at the end of the
first segment or beginning of the second segment namely, ~o - -[l+6exp(l)l =

.632. To reduce the residual elongation to zero we must apply pressure
(u<O). If we continue to increase the pressure after the original length has
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been restored, we compress the sample (<<0), and when ~u--.8l9, we find c=-

1.2. Now we gradually release the pressure, allowing the sample length to
grow (v>O). This time when the stress is removed we find a residual
compression, so we must pull the sample (u>O) to restore its original lengtil
(c-O). Continuity at the beginning of the third segment requires SO

-(l+Jexp[-(-l.2)]) - -.819 so ~a- [1-.548exp(-~)]. Ifwe pull until so=

.85 and c - 1.3 then start to release, we have ,U - -[l+6exp(l.3)] - .851 so

,0 - -[1- .5O4exp(t)] and so on. Clearly 6 is approaching -.5. The final loop

is traversed repeatedly and is described by the two segments u-[1-.5exp(-c)]
and u-- [l-.5exp(t)]. For a metal alloy sample the stress might be measured

-3
in hundreds of megapascals for microstrains in units of 10 . Clearly we can
shift the position of such loops as well as change their size and shape by
changing the parameters. Rotations are also possible.

Consider another example described by the four segments

f= -8[1-exp(-2+2x)]

f- 8[1-exp(2-2x)]
(9)

f- 8[1-exp(-2-2x)]

f- -8[l-exp(2+2x)]

which have been plotted in Fig 3 and might be used to describe a major
ferromagnetic hysteresis loop. In the idealization of Fig 3 the loop is not
quite closed for finite x. In Eq (9) u-4 ati2 and 6--exp(~2).

As one may readily imagine, a motion may be divided into ❑ ore than two
segments, each with its own restoring force, so th”ata great variety of
figures can be constructed by combining f-cu~es. In some cases we may
require f and/or its derivatives with respect to x to be continuous at
certain switching points in the motion where parameter changes occur. This
will lead to relations between the parameters. If x and t represent physical
variables, we ❑ay want x and its derivatives with respect to t to be
continuous. If X also represents a physical variable instead of merely being
a parameter linking x and t, we may impose similar requirements. In this
report we will limit ourselves to motions with no more than two segments and
will usually consider x and t (but not X) to represent physical variables.

If there is no damping or forcing in Eq (1) it describes a
conservative system. In this case, multiplying by dX-%dt-Vdt and integrating
leads to

E- .5(v2+@2x2) - .5(V:+U2X:) - .5[(uA sin@t)2w2(A cosut)2] - .5(uA)2 (10)
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where E is the constant energy per unit mass in mechanical applications.
Similarly in Eq (5) with /3-F-O so 6-f/<, we can multiply by exp(2ax)dx with
dx-xdt and integrate to find

e - .5[(xexp[ax])2 + (u/a)2[(exp[ax]+6)2 - 621 1

- .5[(xOexp[axO])2 + (w/a)2[(exp[axO]+6)2 - 621 1 (11)

If we multiply Eq (11) by the dimensionless quantity (a<)2 we find

(a~)2e - .5[V2 +ti2(X2-f2)] - E - .5(@02 (12)

using Eq (4) and its time derivative as well as Eq (10). Consequently, there
can be an arbitrary constant energy in the nonlinear case even when E-O in
the linear case, provided neither f nor Q but only A are zero. If X changes
sign periodically in Eq (4) then c cannot be zero for real x. For <-1 and
X-cos(t) for example, we must have (<-1.

II. THE LINEAR OSCILLATOR

The linear oscillator is often used to introduce many of the phenomena
exhibited by nonlinear equations, since, in spite of obeying the principle
of superposition, itcan also have limit cycle solutions. Since the
solutions of Eq (5) are built on those of Eq (l), it will be convenient to
have some solutions of Eq(l) exhibited for reference.

It is common practice to discuss solutions in the X,V phase plane. If
we let V-~, Eq (1) becomes

dV/dX - -(/?V+u2X-FO)/V (13)

when F-FO is constant, Because of superposition we can write

x- Xc+ x -Xc+c
P

where Xc(t) is the complementary solution for

Particular solution which in this case merely

F-O and t-Fo/u2 is the

?/3/2)2+2, the solutions are non-oscillatory-with
(V-O). The phase plane trajectories are given by

shifts the origin. When

(14)

at most one turning point

[(V-Y+Xc)/B+]7+ - [(V-~-Xc)/B-]7- (15)

with

8



7= -(P/2) k 4(19/2)2-w2 (16)
and

Bk - VO - :Xco (17)

for initial values VO and XCO-XO-C by Eq (14) as shown, for example, by

Minorskys. In the Xc,t plane

- -y+(t-to)
Xc-[Be - B+e~-(t-to)]/(7+.~-) . (18)

Special forms hold when (B/2)2-w2 so 7+-7- and B+-B-, as is well known.

When (@/2)2<u2, the solution is oscillatory and we have an infinite

number of turning points. If we let Wd- w2-(#1/2)2 , Eq (16) becomes

;“ -(fl/2)~ iwd (19)

where i=fi andwd is the damped frequency. Eq (18) with tO-O becomes

xc - A exp(-#1/2 t) cos(wdt-i30) (20)

with

A=

and
00 =

(21)f~x:o ‘[(vO+~xco/2)/ud]2

arc tan [(Vo+~Xco/2)/(wdXco)] . (22)

If we eliminate t between Eq (18) and its time derivative, we find for the
trajectory in phase space

(V+pXc/2)2 + (wdXc)2 - (wdA)2 exp[-(/3/wd)(t90-d)] (23)

a logarithmic spiral. By convention we may let B increase in a
counterclockwise direction as t increases. The representative point in phase
space then approaches or recedes from the origin, depending on the signs of
L9and t.

A well-known particular solution occurs when F is sinusoidal. For
example, if F-Foexp[fiqt] where q-2mv is the circular driving frequency,

9



x - (FO/fl)exp[fiqt] - (FO/lCll)[(cos# ; i sin#)(cosqt 2 i sinqt)]
P

- (FO/lCll)[cos(qt-#) f i sin(qt-#)] - Xr~iXi

- (FO/lL!{)exp[fi(qt-#)] (24)

with 4 - arc tan [q@/(u2-q2)] (25)

and n- (Uz-qz) f iqp (26)

with Irll- PClflwhere Q* is the complex conjugate of Cl.If q is zero, Xp +

FO/w2 as before. By Eq (14) the general solution is the sum of Eqs (20) and

(24). Since Eq (20) is a transient for PO, the phase plane trajectory
spirals toward the elliptical limit cycle

(qX)2 + V2 - (qXO)2 - 2E/m (27)

as X+X and the subscript p is omitted6.
P

Here E is the limit cycle energy,

while m is the mass or its analog in a non-mechanical application.

If F is a square wave in time instead of a sine wave such that C-FO/u2

changes sign but not magnitude at every turning point, we can have another
example of a limit cycles, provided e always aids the motion, countering the
effect of ~>0. Let us begin monitoring the motion at a turning point, VO-O.

Then by Eq (22), tanOO -f3/(2ud) - c, definingc. By Eq (21), A-

xco~ - xco/cos~o or, = in Eq (20), XCO-A COS~O-K, defining K.

Consequently, Eq (14) becomes

X. -K+.f (28)

Since Mo-udt,
‘hen ‘hen ‘dtl-n’

t9has decreased by K and t30-tl-nin Eq

(23), while cos(odtl-OO)--cosOo in Eq (20), then Xcl--Acost90 exp(-cm) -

-K exp(-cfi) so

- CT
‘l-c-Kc

- -XOe-cfi+ c(l+e-cfi) (29)

when we use Eq (28) to eliminate K in favor of Xo. This relates the end of

the first segment to the beginning, Xo. For the second segment (V<O), let us

denote possible changes by using ~ bar over every quantity except t. At the
beginning of this segment t-tl-n/wd, and by analogy with Eq (29)

10



—

Xl - Z - Z e-cm - - X. e-cm + c(l+e-cm) (30)

——
where c-~/(2;d). The second form of Eq (30) comes from requiring X to be

continuous , namely X1-X1. At the next turning point located on the opposite

side of the origin from ~1, 0 has decreased by 2n, so from Eq (20)

—
- En - Z%

= ;(l+e )-cc (l+e-c*) + XOc-(c+c)n . (31)

The second form of 22 is obtained by eliminating ~ in favor of xl, using the

first form of Eq (30). The third form of X2 is obtained by using the second

form of Eq (29), while the final form is simply a rearrangement. If we now
require X2-C+K exp[ -2c7r]-~2,X3-t-K exp[-3cm]-X3, and so on, we can relate

each turning point Xn to XO. For even-numbered turning points we find

—
= ~ e-n(c+~)7r

—

x + [F(l+e ‘cm) - c e
- ziT

2n 0
(l+e-cm)] ~:: e-k(c+c)n (32)

while for odd-numbered points

-c7r
‘2n+l = ‘e ‘2n

+ ~(l+e-cm) (33)

where n=0,1,2 .... As the number of turns increases without limit (n+=), the
first term in Eq (32) vanishes and the turning points become independent of
the initial conditions, provided (c+c)>O. This illustrates another limit
cycle solution of Eq (l). Recall

Ww-k(c+:)=- [1 - ‘-(C++-l (34)

Eq (34) enables us to write the limit cycle turning points, Eqs (32) and
(33), in terms of a finite number of elementary functions

~(even)
-zlr- [i(l+e ) - ce

-EX
(l+e - c= )]/[l-e

-(C+:)Z1

~(odd) - [t(l+e-cm) - le-c*(l+e
-Z?l

)]/[l-e
-(C+Z)%l

(35)

(36)

11



Eqs (35) and (36) could have been found by requiring cume closure (X2-XO)

or (X3-X1) as well as continuity. However, this would not bring out the fact

that the limit cycle is approached no matter what the initial conditions may
be. In addition, continuity and closure also hold for periodic trajectories
like ellipses which are not limit cycles.

If ;-t and ;-c, then ~(even)-~(odd) and we have a spiral toward the

vertex c instead of a limit cycle. If &c-O (no damping) and ;-c, Eqs (35)
and (36) are indeterminate. The ~rajectory is an ellipse with center c and
not a limit cycle. If &c-O and C+C, no continuity is possible. The
trajectory consists of discontinuous elliptical arcs and is not a limit
cycle. If ;--t and ~-c>O,

XL(odd) - - XL(even) - f(l+e-cx)/(l-e-cm) (37)

and the limit cycle is symmetric about the origin.

The restoring force, 02X, in Eq (1) adds and subtracts equal amounts
of energy each half-cycle and so is not a factor in determining the
existence of a limit cycle, provided the motion is oscillat~ry. Fig 4 shows
an example of a symmetric limit cycle with -c=~-l/&.577, ~1.024 and
&~=.440, so ;d~d-l, ~-c-,220 and t90-arctan c - .217. From Eq (37) we find

&-fi=Xco+.577 by Eq (14), SO

x- - D - .577 - -2.309 -Acos( -.217) (38)
co

from Eq (20) and A--2.364 as from Eq (21). The time-dependent solution is
given by Eq (14) together with Eq (20) and its time derivative. For V>O

x- -2.364e-”22tcos(t- .217) + .577 (39)

v= 2.364e- ”22t[.22cos(t- .217) + sin(t-.2l7)] (40)

At the first turning point tl-n/wd-m and O1=OO-X- -2.925, so cos[(t-tl)-(OO-

fi)]-cos(t-.2l7) once more. The damping factor becomes exp[-.22(t-n)] which
is equal to unity at the beginning of the second segment when t-tl-n. Then

X1-&~l-~ COS(2.925)-. 577, so X-A. Half-cycles with V<O are then described

by

Y- -2.364 e
-.22(t-x)cos(t- 0217)

- .577 (41)

v - 2.364 e
-.22(t-fi)[.22cos(t

-.217) + sin(t-.2l7)] (42)

12
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Examples of other intial conditions inside or outside the limit cycle
are also shown in Fig 4. If the trajectory starts from the origin (XO-VO-O),

we find Xco- O - .577 - AOCOS(- .217) so AO-- .591. Then for the first half-

cycle with V>O, for O<t<m

x- -.591 e
-.22(t-o)

cos(t-.2l7) + .577

v- .591 e-.22(t-0) [.22cos(t. .217) + sin(t-.2l7)l

—

‘ince ‘l-xl
-,866-~1cos(2.925) -.577, ~1--l.478 and

x- -1.478 e
-.22(t-n)

cos(t-.2l7) - .577

v- 1.478 e
-.22(t-n) [.22

cos(t-.2l7) + sin(t-.2l7)]

(43)

(44)

(45)

(46)

for x<t<2z. At t2, ~2-- 1.299-X2-A2COS(6 .066)+.577, so A2--1.921. If we look

at the sequence -.591,-1.478 and -1.921, we see that A is approaching the
limit cycle value, -2.364, even as X and V are approaching their limit cycle
forms given by Eqs (39)-(42). If the phase of the driving force were shifted
initially by 180°, the motion would begin with X<O, V<O and the trajectory
is a reflection through the origin of the one shown. In either case, the
system is self-excited and approaches a stable oscillation state even if
started from rest at the origin.

If the trajectory starts from a point outside the limit cycle such as
xQ-- 2, VO=O, we find X --2- .577-AOCOS(- .217), so A --2.639 and

co o

x- -2.639 e
-.22(t-o)co~(t- 0217) + 577

. (47)

v- 2.639 e-.22(t-0) [022 cos(t..217) + sin(t-.2l7)l (48)

for the first half-cycle with a turning point at X1-1. 866-~1-~1cos(2 .925)-

.577, so zl=- 2.501, beginning to approach the limit cycle value of -2.364.

The procedure is clear, so there is no need to elaborate further on this
example.

A.

111. CONSTANT PAMMETRIC EXCITATION

~ntroduction

Once we specify fl,u2 and F, we can write solutions to Eq (l). If we
also specify a,< and ~, we can use Eq (4) to write solutions to Eq (5). The
number of possible combinations of six constant parameters is too large to
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examine extensively in this report, so we will be highly selective. In this
section we consider cases in which F-FO, a constant (possibly zero).

When F-~-0, Eq (5) is separable. Its solutions are well-known and
their application to penetration mechanics has been discussed’.

B. Some non-oscillatorv trajectories

Eq (15) reduces to a simple quadratic form in Xc and V when 7+--1 and

7---2, as occurs when W2-2 and &3 in Eq (16). When X and Xc differ by a

constant as in Eq (14), then the X,V trajectory segments are hyperbolic or
parabolic depending on the characteristic which in turn depends on the

intial conditions in Eq (17). Other values of 7+ and 7- will give
trajectories which are qualitatively similar.

In our first example we let U2-2 and /%3 with XcO--l in Eq (17) so B+=

VO-l and B--VO-2. A choice of VO in the interval 1~0<2 will give B+ and B-

opposite signs so V, the derivative of Eq (18), will not vanish until t-.
In other words, the X,V trajectory will have no turning point. Let us take

VO-1.5 in appropriate units. Then B+-.5--B- and the trajectory equations are

for 0=1

x- -.5e-t(l+e-t) + FO/2 - <ex+ ~ (49)

V - e-t(e-t + .5) -(vex (50)

Clearly V and v only vanish for t- and X-+FO/2. If FOSO, the X,V trajectory

lies in the upper left quadrant of the X,V plane. If FO>O, it may lie

partially or entirely in the upper right quadrant. Other initial conditions
can lead to trajectories in the lower half plane. From Eq (50) we see that v
has the same or opposite sign as V depending on the sign of f. Suppose .$-1
and FO-O. Then by Eq (49), exp(xo)--l-f~, so rs-1. Clearly, the initial

value, xo, as well as the final value can be negative, zero or positive. The

X,V and X,V trajectories are easily sketched and will not be shown here. For
other values of U2 and /?the calculations are easier if we work with
equations like Eqs (49) and (50) rather than with Eq (15) and its analog in
the X,V plane obtained by substituting Xc-[~exp(ax)+~]-c and V-a<vexp(ax) in

Eq (15). For applications to impact attenuation, for
initial conditions (XO,VO), we may adjust the linear

example, with given

(~), quadratic (a) and
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Coulomb or dry friction (Fo) damping as well as the other parameters in the

exponential stiffness in order to obtain a desired final value of x as v+O.

In our second example, let us consider a case in which the motion is
not only stopped but partially reversed (a rebound in a ❑echanical system) .

If we let Xco- 0, then B+-B--VO in Eq (17). In this case as well as others in

which the VO term dominates, B+ and B- have the same sign so V as well as v

will vanish after a finite time and a single turning point can occur in each
of the X,V and X,V trajectories. Here we will consider some examples in
which the turning points are also switching points at which the parameters
can change. In our examples we will keep U2-2 and ~-3 with FO-O throughout

the motion. If XO-O, VO=l and -~-<-a-l, we find

X - e-t(l-e-t) - ex-l

V - e-t(2e-t-1) x-ve

(51)

(52)

with the restoring force f-2(1-exp[-x]). The first segment of the X,V
trajectory lies in the upper right quadrant as does the first X,V segment,
as shown in Fig 5. Turning points occur (V-v-O) when tl-ln2 at X1-.25 and

X1-.223. If none of the parameters change, then Eqs (51) and (52) describe

the second segments as well. Both of these have minima followed by an
approach to the origin as t+. These are shown by the solid tunes in the
lower half planes in Fig 5. Different choices for a,t$ and { could lead to
trajectories less similar than shown in Fig 5. In our example the linear
damping, the quadratic damping and the restoring force all oppose the motion
for t<tl. After tl, keeping -f-f-a-l changes the sense of the quadratic

damping and the restoring force from opposing to aiding the motion, while
the linear damping continues to oppose the motion.

Suppose changes occur in a,< and f at the turning point. If x
represents a physical variable which must be continuous, the condition
required is ~ -x or

11

ii
1
- (l/Z) ln[(I1-F)/F] -xl- (l/a) ln[(X1-~)/(] (53)

where a bar denotes a value after the turning point and the right subscripts
denote values at tl. It is possible to choose parameters which make both x

and X continuous. However, if X does not represent a physical variable, then
there is no need to do this. As an example let us take a--l so the quadratic
damping opposes the motion in the second segment as well. The the restoring
force might or might not change its sense, depending on our choice of ~/1.
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Since ;l-O at the beginning of the second segment, ~ is the only force

acting and its sense influences the sh~pe of the second segment strongly,
provided it is not initially zero. If fl-O, then the x-acceleration is

momentarily zero. However, the motion continues because the X-acceleration
is -2Z1+0 in our example.

Suppose -~-~~- -1 so ~1--2[l-exp( .223)]-.5 and aids motion in the

negative x direction. Let us also choose x continuous so ~1-X1/(l+X1)-.2 by

Eq (53). Since ~1-0, we find ~-.2 and ~--.4. The initial time in Eq (18) is

no longer zero but t =ln2. Then we find
1

~ = .8e-t(l-e-t) - 1 - e
-:

(54)

v- -.8e-t(l-2e-t) =; e
-;

(55)

for the second segments. The discontinuity in X is evident in the dashed X,1’
trajectory in Fig 5. The new %,; trajectory lies too close to the solid line
to be distinguished in the scale of the figure.

Suppose we choose F-O. Then ~--2, ~ constant opposing motion in the
negative x direction. If we also choose (-.3125, we (incidentally) keep X as
well as x continuous. The trajectory equations are

~ - e-t(l-e-t) - .3125 e
-G

(56)

V - -e-t(l-2e-t) - -.3125 ; e
-s

(57)

so the original sol$d line XLV trajectory has been restored as in Eqs (51)
and (52). However, v>O when V<O by Eq (57) and the second segment of the x,17
trajectory is now given by the dashed line in Fig 5. By dividing Eq (57) by
Eq (56) we find

G = (1-2e‘t)/(l-e-t) (58)

for tzln2 and ;+l as ta and ;+0.

If we include FO+O, more possibilities arise. For example, in the last

case above, ;>0 can have a maximum followed by an approach to zero instead
of an approach to 1 as in Eq (58). Or we can construct an X,V trajectory
which terminates at a particular value of x after a finite instead of an
infinite time. An example of the latter situation occurs if we add FO--l--TO
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(a dry friction force which always opposes the X motion). If XO-.366 instead

of zero and VO-l as before, we find

x- 2.732e-t - 1.866e-2t - .5 - ex - 1 (59)

v= -2.732e-t + 3.732e-2t
x

-ve (60)

with -~=<-Q=l as before and XO-.312, VO-.732 instead of 0,1. Now turning

points occur when exp(-tl)-.732 at X1-.5 and X1-,405. If cz,fand f do not
—

change,
‘hen ‘l=X1

-.5 by Eq (53). But ~0=1, so ~cl-~1-.5-0. Since ~1-0 also,

we find @-~--O from Eq (13). This implies that X remains at .5 andV
remains zero with x-.4O5, v-O for all future time.

These examples should suffice to indicate some of the types of behavior
which are possible.

C. Some Oscillator Trajectories

1. Elementary Examples

First of all, suppose @-O, W2-4 and FO-O with XO-XO-O and Vo-vo-l. In

addition, let -f=~-l/a=l, so

x- .5 sin2t- ex - 1 (61)

v= xcos2t =ve (62)

The X,V trajectory segment is an elliptical arc, while the X,V segment is
similar in appearance. Both are shown by solid lines in the upper right
quadrants of Fig 6. The first turning points occur at X1-.5 and X1-.405 when

tl-n/4. If we require x to be continuous, we find ~1-1/3fXl, ,SOX is

discontinuous . The second segments for negative velocities are then
described by using cos[2(t-fi/4)]-sin2t so

x- 1/3 sin2t - 1 - e
-:

v - 2/3 cos2t - ; e
-G

if p+o, &@=2, -~-~-l/~--l. The second turning

-.288 when t-3m/4. To keep x continuous, we find

(63)

(64)

points are R2--l/3 and ;2=

‘2
--.25, SO
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x- .25 sin2t - ex - 1 (65)

v- .5 cos2t - v ex (66)

describe the third segments, and so on. It is clear from Fig 6 that the X,1’
trajectory consists of a series of discontinuous elliptical arcs with
decreasing amplitudes 1/2: 1/3, 1/4, etc., while the X,V trajectory is a
spiral approaching the origin. If a did not change sign at the turning
points, Eqs (61) and (62) would describe the entire motion and we would
obtain the closed trajectories shown by the dashed lines continuing the
first segments. The X,V trajectory would be an ellipse. The alternation of
positive and negative quadratic damping would always bring the nonlinear X,V
oscillator back to its original energy state. In neither case do we have a
limit cycle.

If we allow positive or negative linear damping we obtain spiral X,t7
arcs instead of elliptical arcs, while the X,V trajectory will spiral more
rapidly or more slowly, depending on the sense of the linear damping. If we
also ailow nonzero FO-,other possibilities arise as one can readil~

imagine.

2. Two-sezment Limit Cycles

a. Introduction

We will limit ourselves to cases in which
at turning points with a return to the original
changes by 2x. We will also keep x continuous.

From Eqs (4) and (29)

parameter
parameter

exp(axl) - <-l(X1-f) = f-l[-&e-cfi+~(l+e-cm)-f]

= <-l(t-f) (l+e-cm) -e-cm[(-l(Xo -~)]

- b2-e-cnexp(axO)

changes occur
set each time

only
19

(67)

where b2-<-l( t-f)(l+e-cfi) - -6(l+e-cfi). Eq (67) relates the first turning

point, xl, to the initial turning point, XO. Continuity of x requires ~l-xl,

so from Eq (53)

(68)

using Eq (4) again. From the second form of Eq (31)
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(69)

Continuity of x requires ~2-x2, so from Eq (53)

d(x2-r) - [(W1(Y2-F))=’= (70)

The left side of Eq (70) is exp(czx2) by Eq (4). From Eqs (67) to (70)

exp(ax2) - [ ~-l(;-~)(l+e-cfi) - e
-z%

exp(~xl) ]
a/;

-[bl-e ‘Fn[b2.e ‘Cfiexp(axo)]=/Q ~Q/: (71)

- z7r
where bl-~-l(;-~)(l+e ) - -~(l+e-cn ). Eq (71) relates the second turning

point, x2, to the intial value, XO.

By analogy with Eq (67)

exp(ax3) - b2-e-cmexp(ax2)

.=b2-e ‘cm[bI-e ‘Zfi[b2.e
;/a a/E

‘Cnexp(axo)] ] (72)

by using the second form of Eq (71). By analogy with the first form of Eq
(71)

- z7r a/E
exp(ax4) - [bl-e exp(;x3)]

——

= [bl-e‘Gn(b2-e ‘Cn[bl.e ‘zn[b2-e
E/a a/a a/a a/Z

‘Cnexp(axo)] ] ) ] (73)

using the =/a power of Eq (72), and so on.

We can write general expressions for even and odd turning points if we
let O and ~ operating on a function Z be defined by

OZ - b2 - e-cTZa’a (74)

and

bZ-bl-e
-Gx zG/a

(75)

Then for the even-numbered turning points

exp(~x ) -
2n

(50)nexp(=xO) (76)
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and for the odd-numbered turning points

=p(ax2n+1) - @xp(Zx2n) (77)

for n-0,1,2. <.. The first yalue of n in Eq (76) gives an identity, while the
next two values give the (a/a) powers of Eqs (71) and (73). The first two
values of n in Eq (77) give Eqs (67) and (72). The form of equations like
Eq (73) reminds one of a nest of dolls. Since a/~ can have any value, these
forms might also be called generalized continued fractions.

b. ~lternatin~ Positive and Ne~ative Ouadratic DamDing

In the special case ~/a - 1, the quadratic damping is constant in
direction and so alternates its sense from helping to hindering the motion
and back every cycle. Eqs (76) and (77) become

exp(ax2n) = e
n-1 -k(c+~)m

(78)
-n(c+~)flexp(axo) + (b1+b2a2) \-oe

and
exp (ax

2n+l)
- b2 + a1exp(ax2n) (79)

where we have introduced al=-exp(-cm) and a2--exp(-Zfi). Eqs (78) and (79)

are the nonlinear analogs of Eqs (32) and (33). As n- both equations become
independent of the initial condition, XO, and we have expressions for the

even and odd turning points of a limit cycle, provided (c+~)>O. From Eq (34)

exp(ax ) - (80)(b1+a2b2)/(1-a1a2)OL
and

‘xp(ax~L) (81)- (b2+a1b1)/(1-a1a2)

where xOL is the value of all the even-numbered turning points of the limit

cycle and XIL is the value of all the odd-numbered turning points. Eqs (80)

and (81) are the analogs of Eqs (35) and (36). If the right sides of
Eqs (80) and (81) are negative, we need complex (ax). Similar

considerations will arise in the next subsection where we will give an
example .

c. Either Positive or Negative Ouadratic DamK)irg

In some applications quadratic damping might have one magnitude and
sense (either always aiding or always opposing the motion). ‘l’his implies the
special case a/a - -1, so that Eqs (76) and (77) become continued fractions.
For example, we can write Eq (72) as
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using Eq (67),

turning point,

exp(ax3)-b2 - al

bl+a2

exp(ax,) (82)

relating the second

xl. Similarly,

exp(ax5)-b2 - a

bl+~

L

odd turning point, X3, to the first odd

—

b2+a1

bl+a2

exp(axl)

and so on. From Eqs (82) and (83) we see that we
continued fraction with period two. Our notation
facilitate comparison with Wall’s theorems. Here

(83)

are dealing with a periodic
has been chosen to
we will let z revresent the

limit of the s~ries of fractions begun in Eqs (82) and (83). Wall;s
constants Aiand B are related to our constants as follows: A a

i
~- ~, B1-bl,

A2-b2a1 and B2-b2b1+a2 with A-l-BO-l and B-l-AO-bO-O. Then the value of the

fraction (the limit of the series) is one root of the quadratic equation

b1z2 + (b2b1+a2-al)z - b2a1 - 0

In other words, z - ~~ (exp[ax2n+1]-b2) - exp[axlL] - b2,

+a ) ~ ~(b1b2+a1-a2)2 + 4a2b1b2- [ (blb2-a2 1exp[axlLl

Since exp[ax ~Ll - b2 + alexp[axoL ] by Eq (67), we find

(84)

or

l/(2b1) (85)

2 + 4a2blb2]/(2a1bl) (86)exp[axoL] - [(-b1b2-a2+a1) ~ ~(b1b2+a1-a2)



Consequently, the limit cycle odd and even turning points represented by XIL

and‘OL’ are independent of the initial conditions and depend only on the

parameters. We could obtain the same relations by requiring tune closure,

‘2-X0 ‘
in Eq (71) or X3-X1 in Eq (72) or (82). Normally, positive or

negative quadratic damping throughout a ❑otion would lead to spirals toward
or away from a fixed point. Eqs (85) and (86) give the parameter relations
which are needed to prevent either of these possibilities from happening.

From Eqs (85) and (86) we see that linear damping is not required for
an X,V ljmit cycle in contrast with the requirements for an X,V limit cycle.
Even if /?-fl-Oso &c-O and a1-a2-- 1, Eqs (85) and (86) are still

determinate . Positive or negative linear damping will merely decrease or
increase the size of an X,V limit cycle, provided oscillations are still
allowed. Consequently, we can concentrate on examples which have no linear
damping without much loss in generality. In such a case Eqs (85) and (86)
simplify to

exp[axoLl - -f + ~~2 - (~/6) (87)

exp[axlLl - -6 - /62 - (J/~) (88)

If we also require symmetry about the origin, namely XIL--XOL, these

equations require ~=6<0 with 6221 for real variables and parameters. If
~<6<0, the right sides of Eqs (87) and (88) will be real, positive and
specify the turning points of a real limit cycle. Clearly there are many
other possibilities which can make the right sides of these equations
negative or complex and require complex (ax) or complex x for real a.

i. Real x

First, let us build an X,V limit cycle on the X,V limit ~ycle of Fig 4
~although an ~,V limit_cycle is not required). W~ recall that &&.44 and
~1.024 SO Udwd=l, c-c-.22 and 0.-.217 with -c-c-.577, giving Eqs (39) to

(42). Let us choose -&a-1, -~-(-l and -~-(’--2.Then a2-al--exp[- .22n5,-.5,

Z-6=-2.577 and b2-bl-2 .577(1.5)-3.866. Then Eqs (85) and (86) with positive

-1.317. If we used the negative square
‘quare roots ‘ive ‘OL--1”317 and ‘lL
roots we would obtain f2 which turn out to be spurious (not the value of the
continued fraction). The trajectory equations become

x- -2.364exp(-.22t) cos(t-.2l7) + .577 - exp(x) - 2 (89)

v - 2.364exp(- .22t)[.22cos(t- .217)+sin(t-.2l7)] - v exp(x) (90)
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using Eqs (39) and (40) together with the nonlinear forms of our present
example for the first half cycle. From Eq (89) we find that XOL--1.317 and

not 2, --1.732. The segments with negative velocities are described
‘ince ‘OL

by

x- -2.364exp[ -.22(t-x)]cos(t- .217) - .577 - 2 - exp[-=] (91)

i7- 2.364exp[ -.22(t-x)] [.22cos(t- .2l7)+sin(t-.2l7) J - ; exp[-;] (92)

The limit cycles are shown in Fig 7. The X,V curve is the same as the solid
curve in Fig 4 where we illustrated the point that all trajectories approach
the limit cycle no matter what the initial conditions. Obviously the same is
true of the X,V limit cycle.

S~cond, consider an example without linear dampi~g or ~riving force,
so ~-&t-c-O and there can be no X,V limit cycle. If -cz=a—1~ with -F=(-1

and -~-r--fi,then ~-~--fi. ~e== values in Eqs (87) and (88) give ‘OL-.881=

‘XIL’
using the signs of the square roots shown. We can reverse the signs of

the square roots and still have a single value for the continued fraction.
Therefore, let us use xoL--.88xlLx1L instead. The restoring force is given

by Eq (7) and is illustrated in Fig 1. As the motion proceeds from x--.881
to X=.881, the force changes from point A to point B. At first it is
negative and aids mo’tion in the positive x direction. Then it changes sign
and joins the damping in opposing the motion. At the turning point it is
discontinuous and jumps to point C. On the return trip it first aids the
motion in the negative x direction, then changes sign, and so on.

The trajectory segments with positive velocity are described by

x- -coS(t) - exp[x] -E (93)

v- sin(t) - v exp[x] (94)

while those with negative velocity are described by

R- Cos(t) -E - exp[-;] (95)

v- -sin(t)- G exp[-~] (96)

The X,V trajectory is the unit circle while the X,V limit cycle is the
closed curve shown in Fig 8. The dashed trajectories illustrate how other
trajectories are attracted to the limit cycle. Corresponding dashed semi-
circles are also shown.
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Suppose -~-f=-~ instead of -Z, while all the other parameters

remain the same as for Fig 8. Then ~-6--fi and the equations are

x- -5cos(t) - exp[x] “m (97)

v- 5sin(t) - v exp[x] (98)

and

F= 5cos(t) - m - exp[-;] (99)

v- -5sin(t) - ; exp[-~] (loo)

The X,V trajectory is a circle with radius 5, while the X,V limit cycle is

shown in Fig 9. In Fig 10 we show v,t curves for 6--E and -&. Such curves
were named relaxation oscillations by van der Polg.

Finally, let us consider a limit cycle which involves the two-segment
~estoring force described by Eq (8), the loop in Fig 1. As we noted before,
6=6 must have a value between O and -1 for symmetric f arcs concave toward
the origin. Consequently, 62<1 and we cannot use Eqs (87) and (88) for real
(axL) , However, if ~-~ is not zero we can use Eqs (85) and

al-a2-a--exp(-cm) and ~-6-- .5,we have b2-bl-b-. 5(l-a).Then

will lead to real (axL). If c-.838, (-a)=.0718, (b/2)-.268

If c=- .838, then (-a)-13.91, (b/2)-3.728 and (axL)-tl.317.

equality the square roots vanish in Eqs (85) and (86). Any

(86). Since

c2.838 or c~-.838

and (axL)-;l.317.

For either

other value of c
gives turning points different from those shown in Fig l,-which (as we
recall) were determined by our choice of $ and a.

If we start at xL- -1.317, then v>O for the first segment and a-l

(positive quadratic damping) means that we follow the upper arc in Fig 1
(the second form in Eq (8) ) and we move cloclwise around the loop. Since
U2-1.703, let us choose Ud-l so c=/l/2-~.838 and t90-arctan(c)A_.697 for

Vo-o. In addition, let us choose F-O so 6-f/(-- .5. Then for positive linear

damping we find XO-A( .767)-- .232~ for XO--1.317 and at t-m we find Xl-

A(-.767) (.O718)-3.232< for xl-1.317. Of course there is no A/( consistent

with these requirements. However, if c- -.838 (negative linear damping),
then XO remains the same while Xl-A(- .767)(13.91)-3.232( and A/<- -.303 is

consistent with both results. More generally, we find that for quadratic
damping of one sense we must have linear damping of the opposite sense in
order to move clockwise about the loop of Fig 1.
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Let us choose -~-{-l with the other parameters as above so -F-~=- .5.
Then for a-l (O~t~n)

x- -.303exp(.838t) cos(t+.697) - exp(x) - .5 (101)

v- -.303exp( .838t)[.838cos(t+. 697)-sin(t+.697)] - v exp(x) (102)

while for =--1 (fi<tg2m)

R- -.303exp[ .838(t-n)] cos(t+.697 - -[exp(-~) - .S] (103)

7= -.303exp[ .838(t-m)] [.838cos(t+.697) -sin(t+.697) ] - ~ exp(-~) (104)

In Fig 11 the discontinuous X,V trajectory is shown by dashed curves while
the X,V limit cycle is shown by a solid curve. Our choice of parameters made
the square roots vanish in Eqs (85) and (86) and produced a semi-stable x,~’
limit cycle which attracts trajectories from outside itself but not from
inside. A sample attracted trajectory is shown by a dashed curve in Fig 11.
Also shown is a trajectory which begins at the origin and soon becor..-s
unstable (X-WO)as do other trajectories which start just inside the limit
cycle and begin to approach the origin.

Suppose we begin as before but choose positive linear damping (c-.838)
and negative quadratic damping (a=-1 implying the first form of Eq (8) for
our first arc and counterclockwise motion around the loop in Fig 1). Also
let F=O since this does not affect the X,V cycle. Then for a--1 (O<t<n)

x- -4.214exp(-.838t) cos(t- .697) - -[exp(-x) - .5] (105)

v= 4.214exp(-.838t) [.838cos(t- .697)+sin(t- .697)] - v exp(-x) (106)

x- -4.214exp[ -.838(t-n)] cos(t- .697) - exp(~) - .5 (107)

li- 4.214exp[-. 838(t-n)] [.838cos(t- .697)+sin(t- .697)] - ; exp(;) (108)

The trajectories in Fig 12 are similar to those in Fig 11 but are canted
differently. Now the X,V limit cycle attracts from the inside but not frorr
the outside as shown by sample dashed trajectories.

Of course in applications like that in Fig 2 there is no limit cycle.

ji, Complex x

Let us write X-xr+i xi, where Xr and xi are the real and imaginary

parts of x. In addition, let us keep all parameters real. Eq (4) then
requires complex X-Xr+iXi. For example, in the simple case with &F-0, Eq

(1) separates into real and imaginary parts with solutions
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Xr - Arcos(ut-dr) (109)

xi - Aicos(ut-Oi) (110)

Even with linear damping and forcing Eq (1) separates into independent
equations and both Xr(t) and Xi(t) are easily written down. However, even

when /?-F-O, Eq (5) separates into coupled equations

x=+ a(x2 -
r x;) + (u2/a)[l+6 exp(-axr)cosaxi] - 0 (111)

xi+ a(2xrxi) + (02/Q)[l-6 exp(-axr)sinaxi] - 0 (112)

The solutions to these equations are found by using Xr and Xi in Eq (4) and

separating to find

exp(axr)cosax. - (Ar/<)cos(wt-Or) - 6
1

(113)

exp(axr)sinax.
1
- (Ai/<)cos(wt-Oi) (114)

By squaring and adding these equations we find xr(t) and by dividing one by

the other we find,xi(t). The same procedure may be followed even when @ and

F are not zero, although the final expressions are more complicated. In
general we now have four trajectory types: (X=,vr), (Xi,vi), (Xr,Vr) and

(Xi,vi).

Consider the case in which the right sides o! Eqs (87) and (88) are
both real but negative, for example 6>0 with 62Z6/6. Since x must be complex
these equations

exp(ax )
rOL

exp(ax )
rlL

Since the right

become

. .
cOsaxiOL+l ‘lnaxiOL 1 - -6 + 462 - (6/6)

+i sinaxilL] - -6 - j62 - (6/6)
cOsaxilL

sides are real, we must have simx~l-O

(87)

(88)

at both turning

points. Since the right sides are negative, we must have cosax<,--l at both
Lb

turning points. In other words, axiL ❑ust be an odd multiple of x at turning

points. Since Eq (114) will then vanish at turning points, we may choose
t9i-7r/2if Ai is not zero and if turning points occur whenever ut is a
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multiple of m, for example. If we begin at a turning point we can let Or-O

in Eq (113) and compare with Eqs (87) and (88) to find (AJf)-~62 - (6/6).

In special cases like ~-1/6 or ~-6-l this square root van;shes, and
our choice of dris arbitrary.

Let Or-O and t3i-m/2 in Eqs (l13)and (114) with w=f-a-l for

convenience . Squaring, adding and taking the derivative gives

A2sin2t + A~cos2t - 2Ar6cost +6Zexp(2xr) - i

v
r
- exp(-2xr)[(A~ - A~)cost + Ar6]sint

(115)

(116)

while dividing and taking the derivative gives

t anxi = Aisint/(Arcost - 6) (117)

v. - Aiexp(-2xr) (Ar - 6cost)
1

(118)

when we use Eq (113) to simplify Eq (118). From the last two equations we
see that for Ai-O, vi-O and x~ is the infinite set of fixed points @n/a

with n-0,1,2, ... For “non-zero A~, 6zAr allows an infinite set of periodic

solutions , while 6cAr prevents vifrom vanishing. From the first two

equations we see that there can be only one periodic solution. Of course
unstable trajectories of both types are allowed.

As a particular example consider ~-6-fi with -~r-Ar=~~” = 1 and

-zi- Ai-l. Then for a-1 (O<t<m~

exp(2xr) - 3 - 2JZcost and vr- fiexp(-2xr) sint (119)

tanxi - sint/(cost - E) and vi-exp(-2xr) (l-ficost) (120)

These equations describe the first segments of the nonlinear trajectories.
Both linear trajectories are unit circles ~0 degrees out of phase with each
other in the case we are considering. For a--1, the second segments are

exp(-2Rr) - 3 + 2./Zcost and G - -fiexp(2=r) sint
r

(121)
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ta~i - sint/(-cost - m) and ;i-exp(2=r) (-1-~cost) (122)

The (Xr,Vr) limit cycle is shown at the top of Fig 13 while three of the

(Xi,Vi) limit cycles are shown at the bottom, two as solid tunes centered

at x. - @ with clockwise motion of the representative point as for the real
1

trajectory and one as a dashed tune centered at xi-O with motion in the

opposite direction. The dashed trajectory and all those centered at even
multiples of n are forbidden since Cosxi-l instead of -1 as required when

real turning points occur. The nonlinear real and imaginary trajectories are
also out of phase. All of these limit cycles are bistable, attracting from
inside as well as from outside. The imaginary trajectories in Fig 13
resemble the continents of Africa and South America.

Next, consider the case ~n which the right sides of Eqs (87) and (88)
are both complex because 62<6/6. By equating real and imaginary parts we
find

‘xp(axr_JL) cOsaxiOL - ‘6 - exp(axrlL) COSQXilL (123)

exp(axroL) sinaxioL - ~~- - -exp(axrlL) sinaxilL (124)

By squaring and adding these equations we find

exp(2ax )
rOL

- exp(2axr1L) - 6/r (125)

so 6 and ~ must have the same sign and xroL-xrlL. From Eq (124) we also see

that xiOL--xilL, If we use Eq (125) in Eqs (123) and (124), we find

+&
cOsaxiL --

(126)

for 6< or > 0. By comparing Eqs (113) and (123) we see that for Ar#O we can

take ~e-@e-7r/2 at turning points. By comparing Eqs (114) and (124) we see
LA

that we can take

Let 6r-r/2

square , add and

~i-Oi-O with (Ai/f)-~~.

and t9i-0 in Eqs (113) and (114) with u-f-a-l again. If we

take the derivative we find
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exp(2xr) - A~cos2t + A~sin2t - 2Ar6sint + 62

v - exp(-2xr)[(-A~ + A~)sint - Ar6] cost
r

(127)

(128)

while dividing and taking the derivative gives

tanxi - Aicost/(Arsint - 6) (129)

v. - Aiexp(-2xr)(-Ar + 6sint)
1

(130)

As a particular example consider ~-6=1/fi with Kr=Ar=O and -~i-Ai=

m= l/J2. Then for a=l (O<t~7r)

exp(2xr) - .5(1 + Coszt) and v - -.5exp(-2xr) sint cost
r

(131)

tanx. = -cost
1

and
‘i

- .5exp(-2xr) sint (132)

For :=-l (m<t~2x)

exp(-2xr) - .5(l+cos2t) and v - -.5exp(2xr) sint cost
r

(133)

tanxi- -cost and
‘i

- .5exp(2xr) sint (134)

At the top of Fig 14 the (xr,Vr) trajectory is a double egg with pausing

points (vr==Owithout a change in sign) at xro-xrl-O. The turning points

xr-f.347 occur half way through each se~ent. Since Eq (125) is not

satisfied, this is not a limit cycle. The imaginary trajectories at the
bottom of the figure are not limit cycles either and the middle one does not

meet the condition cosx~L--l/Jli for 6>0.

Of course there are many other cases possible besides the simple
symmetric examples we have considered. AS usual, our examples are meant to
illustrate the method rather than exhaust the possibilities.

IV. SINUSOIDAL PAMMETRIC EXCITATION

When F-FOcosqt in Eq (l), the restoring force of Eq (6) includes

sinusoidal parametric excitation
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f- (u2\a)[l + (1/&)[f -tcosqt]exp(-ax) ] (135)

As is well known, in the absence of linear damping X(t) is the superposition
of free and forced oscillations and is periodic or aperiodic depending on
whether q/u is a rational or irrational number. Of course none of these
solutions are limit cycles. When positive linear damping is present, we have
the linear limit cycle of Eq (27) as the asymptotic solution upon which a
nonlinear limit cycle may be built.Since

x - (l/a) ln[(X - f)/<] (136)

from Eq (4), then for real x, f cannot be zero if X periodically assumes
positive and negative values. The stability of x depends on the parameters ~
and ( as well as X. For ~>0, x is stable provided ~ is less than the minimum
value of X. For <<0, it is stable if f is greater than the maximum value of
X. Once the parameter of X are given, we can determine ranges of ~ values
which lead to stable or unstable x. For example, in Fig 15 we have plotted
maximum and minimum values of X with zero damping and phase angle and
A-FO-l so only q varies. The cumes shown connect all irrational values of

q/u and enable us to obtain “safe” ranges of f which keep x stable. When q-u
X itself is unstable. For rational values of q/u the maxima and/or minima of
X may not coincide with the tunes shown as indicated by asterisks when q/ti
is 2 or 3. If q/u is irrational and X is aperiodic the X,V trajectory will
wander in a limited region of phase spaces. In such a case the X,V
trajectory might appear to be periodic for a time and then suddenly become
unstable when X-f.” If q/u is rational, X is periodic although the trajectory
might be complicated and the period long. In such a case a stable X,V

trajectory will also be periodic. However, if x(t) is observed for a time
much less than the period, it might appear chaotic. In practice it is
difficult to maintain frequency ratios constant for long times. In addition,
damping is inevitable in real systems. Stability plots with some other
parameter variable and the rest (including q) constant are easily
constructed as well.

Eq (5) can be written as an autonomous system of three first order
equations. For example, we may let x-v and +1 be two equations and

+ - -av2 - @v- (@2/Q)[ 1 + (l/&)( f + ccosqt )exp(-ax) ] (137)

be our third equation. Some systems with three degrees of freedom, that is,
three independent initial conditions XO, V. and #o, have been found to have

chaotic as well as periodic solutionsl”. Since we have exact solutions for
the parametrically excited exponential oscillator, we can distinguish
periodic and aperiodic solutions but find no evidence for chaos. If Eq (5)
is externally excited, its solutions will be based on solutions of a Hill’s
or Mathieu equation for X and chaos may appear. Since these solutions cannot
be expressed by a finite number of elementary functions, they are beyond the
limits we have set for ourselves here.
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So far in this section we have considered real forcing (external for X
and parametric for x). If F is complex then X and x will also be complex and
the method of finding x(t) based on Eq (20) is similar to that used in the
previous section. Instead of Eq (135) the restoring force will now have a
term containing parametric forcing by a traveling wave exp[i(qt - axi)]. If

all the parameters are real and constant throughout
asymptotic solutions are

Xr - L cos(qt-~)

‘i
- L sin(qt-y)

the motion, then the

(138)

(139)

where L=FO/~(w2-q2)2 + ~2q2 and tan-y=~q/(w2-q2). Thus we can find the

asymptotic nonlinear solutions from

~exp(axr) cosaxi - Lcos(qt--y) - f (140)

<exp(axr) Simxi - Lsin(qt-y) (141)

From Eqs (138) and (139) we see that the limit cycle ellipses have the same
amplitude and frequency but are ninety degrees out of phase. Since any
parameters which allow stable oscillations will lead to limit cycles, there
is no need to derive equations like Eqs (85) and (86). From Eqs (140) and
(141) we find

[<exp(axr)]2 - L2 + (2 - 2Lfcosr (142)

av
r
- qLf sinr/[fexp(axr)]2 (143)

tanax. - L sinr / (Lcosr - f)
1

(144)

av
i
- qL(L - ~cosr) / [<exp(axr)]2 (145)

where r-(qt-~). If f is zero, Xr is a fixed point while axi-r-(qt--y) + = at

constant speed. If l~l<lLl, the (xr,vr) trajectory is a limit cycle.

However, vi never vanishes so the x~ approach infinity with variable speed.

If lfl-lLl, avi-q/2 independent of r and all the xi approach infinity with

constant speed. The (Xr,Vr) trajectory is an oscillation between infinity

and a point near the origin, . If lfl>lLl, then there are an infinite number
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of (Xi,Vi) limit cycles centered at xi equal to multiples of x/Q and one

(Xr,Vr) limit cycle which canbe symmetric about the origin if f2-L2+<2.

For example, suppose a-bf-q-l and f-fi. Eqs (142) and (143) become

exp(2xr)-3 - 2ficosr and vr-fisinr/exp(2xr). Then for r equal to even and

odd multiples of m we have x --.881 - -Xrl. Each imaginary limit cycle also
rO

has turning points located symmetrically on either side of their respective
origins. However the maximum and minimum vi values are not equal in

magnitude like the maximum and minimum v values. The trajectories are
r

easily sketched. All are allowed and have representative points which rotate
clockwise.

v. SUMMARY

In this report we have introduced the exponential oscillator and
discussed some of its exact solutions. In particular we have noted that
nonlinear limit cycles can exist whether or not linear limit cycles exist,
at least in some cases. Examples were given restricted to real parameters
but allowing complex variables. These were also limited to one or two
segment motions. Included among these examples was an application
involving mechanical hysteresis, namely a cyclic stress-strain curve.
Clearly we have not exhausted the subject of the exponential oscillator. We
merely mentioned the possiblilty of solutions involving more than two
segments as well as solutions which cannot be expressed by a finite number
of elementary functions. It is also clear that the oscillator we have
discussed is merely one example of many nonlinear equations with exact
solutions which can be generated by the same method. Not only can we use
other forms besides Eq (4) in the transformation of Eq (3), we can also use
other transformations of the dependent and/or independent variable singly or
in succession as well as other starter equations. All of these matters are
subjects for future work.
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